行星齿轮减速器的结构与故障特征分析
行星齿轮传动系统的基本部件是太阳齿轮,行星齿轮齿条和内齿圈。 根据行星齿轮减速器的具体结构、有许多不同的分类方法。简而言之,可以区分第一次减少,第二次减少,第三次减少和第四次减少。二级减速以上减速器的太阳齿轮采用浮动连接方式。故障机制与信号传输路径和模式有许多相似之处。它的运动形式和自我结构更加复杂。因此,分析一阶行星齿轮减速器作为示例。
在第一级行星齿轮减速器中,太阳齿轮通常固定在驱动轴上,并且多个行星齿轮分别与太阳齿轮和内齿圈啮合,并通过行星齿轮架输出动力或运动。齿轮系的主要缺陷是腐蚀、齿磨损和齿断裂。常见的齿轮故障发生在10%的齿轮表面磨损,31%的点蚀,41%的牙齿被折断,18%的其他齿轮被磨损。经过一段时间的齿轮磨损,很难找到初始齿面磨损。只有当磨耗达到一定的振动信号时,齿轮的啮合频率和谐波幅值才显著增加。齿轮传动的循环应力一般超过齿轮材料的疲劳极限,在齿轮的根部逐渐出现裂纹,导致齿裂。齿轮故障振动信号通常以齿轮啮合频率和谐波为载频,齿轮轴的旋转频率和双频为调制频率,因此,调制带宽非常高。行星齿轮的载波频率为齿轮啮合频率或倍增器,调制频率为故障齿轮特性频率或乘法器。
行星齿轮减速器的设计方法
行星减速器的尺寸、重量和承载能力取决于传动参数的选择。设计问题是确定给定的齿轮比和输入扭矩的小齿轮数、每齿轮的齿数、齿轮的模数和宽度。由于行星减速器的特殊结构,每个齿轮的齿数不能任意选择,必须根据一定的匹配条件严格计算。
传统的设计方法是先选择行星齿轮的数量,然后根据匹配条件匹配齿。这种方法的结果并不独特。根据结构布置和设计人员定义的经验,可以选择一组齿数方案,然后根据强度计算模型和齿宽等参数进行选择。在确定结构参数时,必须进行大量的计算,才能得到满足性能要求、尺寸合理的方案。因此,利用计算机寻找更好的设计方案具有实用价值。